高中數學立體幾何重心考點的解題技巧
作者:小編來源:網友投稿時間:2024-03-30 08:00次
摘要:高中數學中立體幾何題目是高考數學重心考點,從近幾年全國及自主命題各省市高考試題分析,隨著課程改革實施范圍的擴張,立體幾何考題側重考查同學們的空間概念、邏輯思維實力
高中數學中立體幾何題目是高考數學重心考點,從近幾年全國及自主命題各省市高考試題分析,隨著課程改革實施范圍的擴張,立體幾何考題側重考查同學們的空間概念、邏輯思維實力、空間想象實力及運算實力.高考立體幾何試題在挑選、填空題中側重立體幾何中的概念型、空間想象型、簡單計算型問題,而解答題側重立體幾何中的邏輯推理型問題,主要考查線線關系、線面關系和面面關系,及空間角、面積與體積的計算,其解題方法一般都有兩種或兩種以上,而且一般都能用空間向量來求解.
1、平行、垂直位置關系的論證的策略:
(1)由已知想性質,由求證想判定,即分析法與綜合法相相結合尋找證題思路。
(2)利用題設條件的性質有必要添加協助線(或面)是解題的常用方法之一。
(3)三垂線定理及其逆定理在高考題中使用的頻率最z高,在證明線線垂直時應優先考慮。
2、空間角的計算方法與技巧:
主要步驟:一作、二證、三算;若用向量,那就是一證、二算。
(1)兩條異面直線所成的角
①平移法:②補形法:③向量法:
(2)直線和平面所成的角
①作出直線和平面所成的角,主要是作垂線,找射影轉化到同一三角形中計算,或用向量計算。
②用公式計算.
(3)二面角
①平面角的作法:(i)定義法;(ii)三垂線定理及其逆定理法;(iii)垂面法。
②平面角的計算法:(i)找到平面角,然后在三角形中計算(解三角形)或用向量計算;(ii)射影面積法;(iii)向量夾角公式.
3、空間距離的計算方法與技巧:
(1)求點到直線的距離:經常應用三垂線定理作出點到直線的垂線,然后在有關的三角形中求解,也可以借助于面積相等求出點到直線的距離。
(2)求兩條異面直線間距離:一般先找出其公垂線,然后求其公垂線段的長。在不能直接作出公垂線的情況下,可轉化為線面距離求解(這種情況高考不做要求)。
(3)求點到平面的距離:一般找出(或作出)過此點與已知平面垂直的平面,利用面面垂直的性質過該點作出平面的垂線,進而計算;也可以利用“三棱錐體積法”直接求距離;有時直接利用已知點求距離比較困難時,我們可以把點到平面的距離轉化為直線到平面的距離,從而“轉移”到另一點上去求“點到平面的距離”。求直線與平面的距離及平面與平面的距離一般均轉化為點到平面的距離來求解。
4、熟記一部分常用的小結論
諸如:正四面體的體積公式是;面積射影公式;“立平斜關系式”;最z小角定理。弄清楚棱錐的頂點在底面的射影為底面的內心、外心、垂心的條件,這有可能是迅速解答某些問題的前提。
5、平面圖形的翻折、立體圖形的展開等一類問題,要注意翻折前、展開前后相關幾何元素的“不變性”與“不變量”。
6、與球相關的題型,只能應用“老方法”,求出球的半徑即可。
7、立體幾何讀題:
(1)弄清楚圖形是什么幾何體,規則的、不規則的、組合體等。
(2)弄清楚幾何體結構特點。面面、線面、線線之間有哪些關系(平行、垂直、相等)。
(3)重點留意有哪些面面垂直、線面垂直,線線平行、線面平行等。
8、解題程序劃分為四個過程:
①弄清問題。也就是明白“求證題”的已知是什么?條件是什么?未知是什么?結論是什么?也就是我們常說的審題。
②擬定計劃。找出已知與未知的直接或者間接的聯系。在弄清題意的基礎上,從中捕捉有用的信息,并及時提取記憶網絡中的相關信息,再將兩組信息資源作出合乎邏輯的有效組合,從而構思出一個成功的計劃。即是我們常說的思考。
③執行計劃。以簡明、準確、有序的數學語言和數學符號將解題思路表述出來,同時驗證解答的適當性。即我們所說的解答。
④回顧。對所得的結論進行驗證,對解題方法進行總結。
關鍵詞:高中,數學,立體幾何,重心,考點,的,解題,技巧,
- 相關文章
- 考不上高中讀什么學校 上職業學校如何?06-08
- 高中畢業學生該做出如何的選擇?06-23
- 成都市幼師專業招生+高中起點+川師大專06-15
- 成都市學前教育專業招生--藝體方向(高中起點)06-16
- 四川省水產學校各專業收費標準06-28
- 職業高中哪所好?06-23
- 南充師范學校20245年制小學教育數學與科學專業招06-23
- 四川省服裝藝術學校2024高中生招生專業招生簡介06-11
- 南充師范學校2024學前教育專業招生高中起點)06-10
- 南充師范學校20245年制小學教育數學與科學選修方06-09
- 仁壽華達高中學校07-05
- 四川省師大附中高中部06-08